Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jonathan D Crane* and Matthew Whittingham

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$
R factor $=0.033$
$w R$ factor $=0.070$
Data-to-parameter ratio $=25.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(1,1,5,5-tetramethyl-2-thiobiuretato)cobalt(III)

At 150 K , the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}\right)_{3}\right]$, comprises an octahedral cobalt(III) ion with three anionic bidentate 1,1,5,5-tetramethyl-2-thiobiuretate ligands. Within the first coordination sphere of the cobalt ion, the disposition of the three S atoms is fac.

Comment

The title compound, (I), is the neutral homoleptic cobalt(III) complex of the anionic bidentate 1,1,5,5-tetramethyl-2-thiobiuretate ligand. The cobalt(III) ion is octahedral (Table 1) with an $\mathrm{S}_{3} \mathrm{O}_{3}$ donor set. The sets of three S and three O atoms are each mutually $f a c$, and their respective planes are almost parallel with a dihedral angle of $1.73(4)^{\circ}$. Within each of the three thiobiuretate ligands, the four atoms of the urea or thiourea groups are close to being coplanar, with the greatest deviation from the least-squares plane of 0.0231 (16) \AA for atom C8. However, overall, the three thiobiuretate ligands all show significant deviations from planarity due to twisting about the central N atom; the dihedral angles between the three pairs of urea and thiourea least-squares planes are 18.28 (6), 21.49 (6) and 7.78 (6) ${ }^{\circ}$. In all three ligands, the pattern of bond distances indicates that the formal negative charge is predominately localized on the S atom. The relatively long $\mathrm{C}-\mathrm{S}$ and short $\mathrm{C}-\mathrm{O}$ average bond lengths of 1.745 (4) and 1.265 (3) \AA are consistent with mostly singleand double-bond character, respectively, and this bond localization is also reflected in the average $\mathrm{C}-\mathrm{N}$ bond distances to the central N atom: 1.318 (3) \AA in the (iso)thiourea group and 1.349 (2) \AA in the urea group. In contrast, all the $\mathrm{C}-\mathrm{NMe}_{2}$ bond lengths are similar, with an average of 1.353 (2) A.

(I)

Experimental

The title compound, (I), was prepared by a variation of the method of Koenig et al. (1987). Dimethylcarbamyl chloride ($1.08 \mathrm{~g}, 10 \mathrm{mmol}$)

Received 24 February 2004
Accepted 1 March 2004
Online 13 March 2004

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
and potassium thiocyanate $(0.97 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile (40 ml) were heated at reflux for 2 h . The solution was allowed to cool to room temperature and excess 40% aqueous dimethylamine (3.4 ml , 30 mmol) was added with stirring, followed after 15 min by cobalt(II) acetate tetrahydrate $(0.87 \mathrm{~g}, 3.5 \mathrm{mmol})$ and water $(5 \mathrm{ml})$. After stirring for a further 15 min , the crude product was obtained as a green powder by precipitation with methanol (200 ml), isolation by filtration and washing sequentially with water, methanol and diethyl ether. Suitable crystals were grown by recrystallization from dichloromethane/methanol (yield $1.18 \mathrm{~g}, 61 \%$). Spectroscopic analysis, IR (KBr disk, $v \mathrm{~cm}^{-1}$): $2916(w), 1533(s), 1473(s), 1387(s), 1355(s)$, 1269 (w), 1198 (w), 1115 (m), 1027 (m), 729 (m), 461 (w); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): 3.34 (br s, 9H), 3.14 (br s, 9H), $3.01(s, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): 173.4, 165.6, 39.7 (2 peaks), $37.5,36.1$; analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{CoN}_{9} \mathrm{O}_{3} \mathrm{~S}_{3}$: C 37.17, H 6.24, N 21.67, S 16.54%; found: C 36.90, H 6.34, N 21.49, S 16.24\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{OS}\right)_{3}\right]$
$M_{r}=581.67$
Monoclinic, $P 2_{1} / c$
$a=13.1635$ (11) \AA
$b=12.1355$ (7) \AA
$c=18.0309(16) \AA$
$\beta=106.665(7)^{\circ}{ }^{\circ}$
$V=2759.4$ (4) \AA^{3}
$Z=4$
$D_{x}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 17726 reflections
$\theta=2.8-30^{\circ}$
$\mu=0.89 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, green
$0.55 \times 0.45 \times 0.10 \mathrm{~mm}$

Data collection

Stoe IPDS-II area-detector
diffractometer
φ and ω scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 2001)
$T_{\text {min }}=0.533, T_{\text {max }}=0.820$
28286 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.070$
$S=0.80$
8038 reflections
319 parameters

8038 independent reflections
5023 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-18 \rightarrow 18$
$k=-14 \rightarrow 17$
$l=-25 \rightarrow 25$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0316 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.38 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Co1-O1	1.9387 (13)	N1-C1	1.324 (2)
Co1-O2	1.9538 (11)	N1-C2	1.348 (3)
Co1-O3	1.9101 (12)	N2-C1	1.358 (2)
Co1-S1	2.2072 (5)	N3-C2	1.358 (2)
Co1-S2	2.2133 (6)	N4-C7	1.320 (2)
Co1-S3	2.2008 (5)	N4-C8	1.349 (2)
S1-C1	1.7358 (19)	N5-C7	1.351 (2)
S2-C7	1.7530 (18)	N6-C8	1.348 (2)
S3-C13	1.7455 (19)	N7-C13	1.311 (2)
O1-C2	1.262 (2)	N7-C14	1.349 (2)
O2-C8	1.272 (2)	N8-C13	1.355 (2)
O3-C14	1.261 (2)	N9-C14	1.350 (2)
S1-Co1-S2	88.196 (19)	O3-Co1-S1	176.93 (4)
S3-Co1-S1	87.97 (2)	C1-S1-Co1	107.22 (7)
S3-Co1-S2	90.40 (2)	C7-S2-Co1	105.50 (6)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 2$	86.80 (5)	C13-S3-Co1	107.50 (6)
O3-Co1-O1	85.72 (6)	C2-O1-Co1	127.72 (13)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 2$	86.54 (5)	$\mathrm{C} 8-\mathrm{O} 2-\mathrm{Co} 1$	119.05 (10)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{S} 1$	93.47 (4)	C14-O3-Co1	131.79 (12)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{S} 2$	90.50 (4)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	123.39 (16)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{S} 3$	95.02 (4)	C7-N4-C8	122.94 (15)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{S} 2$	176.83 (4)	C13-N7-C14	125.12 (16)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{S} 3$	178.17 (4)		

All H atoms were initially located in a difference Fourier map. They were then constrained to an ideal geometry, with a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$, but each methyl group was allowed to rotate freely about its $X-\mathrm{C}$ bond.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-R E D$ (Stoe \& Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe \& Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Koenig, K. H., Kaul, L., Kuge, M. \& Schuster, M. (1987). Liebigs Ann. Chem. pp. 1115-1116.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe \& Cie, Darmstadt, Germany.

