metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jonathan D Crane* and Matthew Whittingham

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

 $Correspondence \ e\text{-mail: } j.d.crane@hull.ac.uk$

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{N-C}) = 0.003 \text{ Å}$ R factor = 0.033 wR factor = 0.070 Data-to-parameter ratio = 25.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(1,1,5,5-tetramethyl-2-thiobiuretato)cobalt(III)

At 150 K, the title compound, $[Co(C_6H_{12}N_3OS)_3]$, comprises an octahedral cobalt(III) ion with three anionic bidentate 1,1,5,5-tetramethyl-2-thiobiuretate ligands. Within the first coordination sphere of the cobalt ion, the disposition of the three S atoms is *fac*. Received 24 February 2004 Accepted 1 March 2004 Online 13 March 2004

Comment

The title compound, (I), is the neutral homoleptic cobalt(III) complex of the anionic bidentate 1,1,5,5-tetramethyl-2-thiobiuretate ligand. The cobalt(III) ion is octahedral (Table 1) with an S₃O₃ donor set. The sets of three S and three O atoms are each mutually *fac*, and their respective planes are almost parallel with a dihedral angle of $1.73 (4)^{\circ}$. Within each of the three thiobiuretate ligands, the four atoms of the urea or thiourea groups are close to being coplanar, with the greatest deviation from the least-squares plane of 0.0231 (16) Å for atom C8. However, overall, the three thiobiuretate ligands all show significant deviations from planarity due to twisting about the central N atom; the dihedral angles between the three pairs of urea and thiourea least-squares planes are 18.28(6), 21.49(6) and $7.78(6)^{\circ}$. In all three ligands, the pattern of bond distances indicates that the formal negative charge is predominately localized on the S atom. The relatively long C-S and short C-O average bond lengths of 1.745 (4) and 1.265 (3) Å are consistent with mostly singleand double-bond character, respectively, and this bond localization is also reflected in the average C-N bond distances to the central N atom: 1.318 (3) Å in the (iso)thiourea group and 1.349 (2) Å in the urea group. In contrast, all the $C-NMe_2$ bond lengths are similar, with an average of 1.353 (2) Å.

Experimental

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, (I), was prepared by a variation of the method of Koenig *et al.* (1987). Dimethylcarbamyl chloride (1.08 g, 10 mmol)

 $w = 1/[\sigma^2(F_o^2) + (0.0316P)^2]$

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$

where $P = (F_o^2 + 2F_c^2)/3$

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

and potassium thiocyanate (0.97 g, 10 mmol) in acetonitrile (40 ml) were heated at reflux for 2 h. The solution was allowed to cool to room temperature and excess 40% aqueous dimethylamine (3.4 ml, 30 mmol) was added with stirring, followed after 15 min by cobalt(II) acetate tetrahydrate (0.87 g, 3.5 mmol) and water (5 ml). After stirring for a further 15 min, the crude product was obtained as a green powder by precipitation with methanol (200 ml), isolation by filtration and washing sequentially with water, methanol and diethyl ether. Suitable crystals were grown by recrystallization from dichloromethane/methanol (yield 1.18 g, 61%). Spectroscopic analysis, IR (KBr disk, ν cm⁻¹): 2916 (w), 1533 (s), 1473 (s), 1387 (s), 1355 (s), 1269 (w), 1198 (w), 1115 (m), 1027 (m), 729 (m), 461 (w); ¹H NMR (CDCl₃, p.p.m.): 3.34 (*br s*, 9H), 3.14 (*br s*, 9H), 3.01 (*s*, 18H); ¹³C NMR (CDCl₃, p.p.m.): 173.4, 165.6, 39.7 (2 peaks), 37.5, 36.1; analysis calculated for C₁₈H₃₆CoN₉O₃S₃: C 37.17, H 6.24, N 21.67, S 16.54%; found: C 36.90, H 6.34, N 21.49, S 16.24%.

Crystal data

$[Co(C_6H_{12}N_3OS)_3]$	$D_x = 1.400 \text{ Mg m}^{-3}$
$M_r = 581.67$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 17 726
a = 13.1635(11)Å	reflections
b = 12.1355 (7) Å	$\theta = 2.8 - 30^{\circ}$
c = 18.0309 (16) Å	$\mu = 0.89 \text{ mm}^{-1}$
$\beta = 106.665 \ (7)^{\circ}$	T = 150 (2) K
$V = 2759.4 (4) \text{ Å}^3$	Plate, green
Z = 4	$0.55\times0.45\times0.10$ mm

Data collection

Stoe IPDS-II area-detector	8038 independent reflections	
diffractometer	5023 reflections with $I > 2\sigma(I)$	
φ and ω scans	$R_{\rm int} = 0.060$	
Absorption correction: numerical	$\theta_{\rm max} = 30.0^{\circ}$	
(X-SHAPE; Stoe & Cie, 2001)	$h = -18 \rightarrow 18$	
$T_{\min} = 0.533, T_{\max} = 0.820$	$k = -14 \rightarrow 17$	
28 286 measured reflections	$l = -25 \rightarrow 25$	
Refinement		
Refinement on F^2	H-atom parameters constrained	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.070$ S = 0.808038 reflections 319 parameters

Table 1

Selected geometric parameters (Å, °).

Co1-O1	1.9387 (13)	N1-C1	1.324 (2)
Co1-O2	1.9538 (11)	N1-C2	1.348 (3)
Co1-O3	1.9101 (12)	N2-C1	1.358 (2)
Co1-S1	2.2072 (5)	N3-C2	1.358 (2)
Co1-S2	2.2133 (6)	N4-C7	1.320 (2)
Co1-S3	2.2008 (5)	N4-C8	1.349 (2)
S1-C1	1.7358 (19)	N5-C7	1.351 (2)
S2-C7	1.7530 (18)	N6-C8	1.348 (2)
S3-C13	1.7455 (19)	N7-C13	1.311 (2)
O1-C2	1.262 (2)	N7-C14	1.349 (2)
O2-C8	1.272 (2)	N8-C13	1.355 (2)
O3-C14	1.261 (2)	N9-C14	1.350 (2)
S1-Co1-S2	88.196 (19)	O3-Co1-S1	176.93 (4)
S3-Co1-S1	87.97 (2)	C1-S1-Co1	107.22 (7)
S3-Co1-S2	90.40 (2)	C7-S2-Co1	105.50 (6)
O1-Co1-O2	86.80 (5)	C13-S3-Co1	107.50 (6)
O3-Co1-O1	85.72 (6)	C2-O1-Co1	127.72 (13)
O3-Co1-O2	86.54 (5)	C8-O2-Co1	119.05 (10)
O1-Co1-S1	93.47 (4)	C14-O3-Co1	131.79 (12)
O2-Co1-S2	90.50 (4)	C1-N1-C2	123.39 (16)
O3-Co1-S3	95.02 (4)	C7-N4-C8	122.94 (15)
O1-Co1-S2	176.83 (4)	C13-N7-C14	125.12 (16)
O2-Co1-S3	178.17 (4)		

All H atoms were initially located in a difference Fourier map. They were then constrained to an ideal geometry, with a C-H distance of 0.98 Å and $U_{iso}(H)$ values set at $1.2U_{eq}(C)$, but each methyl group was allowed to rotate freely about its X-C bond.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: X-STEP32 (Stoe & Cie, 2001) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Koenig, K. H., Kaul, L., Kuge, M. & Schuster, M. (1987). Liebigs Ann. Chem. pp. 1115-1116.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germanv.
- Stoe & Cie (2001). X-AREA, X-RED, X-SHAPE and X-STEP32. Stoe & Cie, Darmstadt, Germany.